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The Method of Fundamental Solutions for the 
Numerical Solution of the Biharmonic Equation 

ANDREAS KARAGEORGHIS* 

AND 

GRAEME FAIRWEATHER+ 

The method of fundamental solutions (MFS) is a relatively new technique for the numerical 
solution of certain elliptic boundary value problems. It fdlls in the class of methods generally 
called boundary methods, and. like the well-known boundary integral equation method, is 
applicable when a fundamental solution of the differential equation is known. In the MFS. the 
approximate solution is a linear combination of fundamental solutions with singularities 
placed outside the domain of the problem. The locations of the singularities are either 
preassigned or determined along with the coefficients of the fundamental solutions so that the 
approximate solution satisties the boundary conditions as well as possible. In many 
applications, these quantities are determined by a least squares tit of the boundary conditions, 
a nonlinear problem, which is solved using standard software. In this paper, the MFS is for- 
mulated for biharmonic problems and is applied to a variety of standard test problems as well 
as to problems arising in elasticity and fluid flow. 1 19X7 Academic Pres. Inc 

1. BACKGROUND 

The two most widely used methods for the numerical solution of elliptic partial 
differential equations have traditionally been finite difference and finite element 
methods. In recent years, there has emerged a powerful alternative to these methods 
for the solution of certain problems, namely those for which fundamental solutions 
are known. Such methods are called boundary methods because, in contrast to 
finite difference and finite element methods, they require that only the boundary of 
the region of the problem be discretized, not the whole region itself. In boundary 
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methods a first stage yields the desired numerical solution on the boundary of the 
region and a second stage produces approximations in the interior, if these are 
required. The most popular boundary methods are the boundary element methods 
(BEMs) or boundary integral equation methods (BIEMs) as they are sometimes 
called. These have proved to be so effective that they are now competing in many 
cases with traditional space discretization methods (see, e.g., Jaswon and Symm 
[ 181 or Banerjee and Butterfield [2]). 

Some of the characteristics of BEMs can be found in all other boundary methods 
developed. In most of the latter, a fixed auxiliary boundary surrounding the domain 
of the problem is introduced, and the numerical solution is based on 
approximations involving points on this auxiliary boundary (see, e.g., 16, 9, 13. 
24, 33, 401). 

A boundary method which is different from auxiliary boundary methods is the 
method of fundamental solutions (MFS), which was first proposed by Kupradze 
(see [I, 25, 26, 271). In Section 2, we extend the MFS formulation of Mathon and 
Johnston [31], which has been succesfully applied to a variety of problems, 
[ 11, 14, 19, 281. The MFS as implemented by these authors is, in a sense, a 
generalization of auxiliary boundary methods, as points determining an auxiliary 
boundary surrounding the region are allowed to move freely and their coordinates 
are variables in a minimization problem. Other MFS-type formulations are dis- 
cussed in [S, 6, 7, 22, 44, 451. 

2. BOUNDARY METHODS FOR THE SOLUTION OF THE BIHARMONK EQUATION 

In many cases, boundary methods have been used for the numerical solution of 
the biharmonic equation, which occurs in the theory of thin plates and slow flow 
problems. Indirect BEMs were first used by Jaswon, Maiti, and Symm [16], 
Jaswon and Maiti [ 171, and Maiti and Chakrabarti [29], but these methods 
seemed to be ill-conditioned for certain boundary conditions in cases when the 
region under consideration included corners. Segedin and Brickell [35] were the 
first to use a direct BEM for the solution of biharmonic problems. Their results 
were satisfactory, but restricted to simply supported plates. A general formulation 
of a direct BEM was first suggested by Fairweather et al. [lo], and this was 
applied recently by Kelmanson [22, 231 to a variety of biharmonic problems which 
involve boundary singularities. Kelmanson also developed a modified BEM incor- 
porating a subtraction of singularity technique (cf. [37]), and this procedure 
produced very satisfactory results. Other BEM approaches have been proposed in 
[3, 4, 8, 12, 34, 36, 39, 41, 42, 43, 461. MFS-type methods for the solution of the 
biharmonic equation were used by Murashima, Nonaka, and Nieda [32] for plate 
bending problems, and by Burgess and Mahajerin [7] for a slow flow problem, and 
by Bogomolny [S], who examined mathematical aspects of MFS formulations for 
the solution of various elliptic boundary value problems, and presented several 
numerical examples. 
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3. THE BIHARMONIC MFS (BMFS) 

We consider the biharmonic equation 

V2(V211/(PN = V”$(P) = 0 

in a closed, bounded domain Q in the plane, subject to either 

6) Bl $(P) 5% a(P) + $(P) = 0, 

or 

(ii) B,Jl(P) = R(P) + $(P) = 0, 

B24vP) = P(P) +w(P) = 0, for peaa. 

As in [IS] and [32], we consider a BMFS approximation of the form: 

(1) 

(2) 

where 

c = cc, 3 c2, C3Y, CNIT, 
d= Cd,, 4, h,..., d,lT, 
f= I%,? [I,, 12,’ f22’ t3,, f32’...’ fN,’ CJ’, 

( lj,, tjz) are the coordinates of the singularity tj, a point outside a, (pi,, pi,) are the 
coordinates of the point pi, where pi E 0, 

and 

r~i=J~tjl-p,,)2+(tj2-p-)2 ‘2 

K~(lj,Pi)= $lO!Arj,), 

K2(f,, pi) = log(r,,). 
(3) 

That is, we approximate the solution to the biharmonic problem by a linear com- 
bination of fundamental solutions of both the biharmonic equation and Laplace’s 
equation. Clearly the approximation (2) satisfies the biharmonic equation. The next 
step is to determine coefficients cj and dj, and locations of the singularities tj for 
which the approximation (2) satisfies the boundary conditions as well as possible. 
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This is done by choosing M points pi on the boundary XJ and minimizing the 
functional 

(4) 
,=I 

which is nonlinear in the cl’s (cf. [31]). The minimization of this functional is done 
using a nonlinear least squares algorithm. The number M of boundary points is 
chosen to be approximately three times the number of unknowns, that is 
M % 12. N, as four unknowns correspond to each singularity. 

To improve the rate of convergence of the least squares algorithm, instead of 
using the expressions (3) for K,(tj, p,) and K2(tj, pi), we use the normalized fun- 
damental solutions: 

2 

Kl ttj2 Pi) = 

rji 

> ( 

1% 

rji 
2 

p+Jm2 p+Jm2 > 

rji 
2 

K2(2,3 Pi) =lOg 

P+J~~ 

(5) 

where p is usually taken to be the radius of a circle containing the region under 
consideration. 

A factor of great importance in the least squares procedure is the initial 
placement of the singularities. In most of the problems considered, it was observed 
that distributing the singularities uniformly around the region was a good general 
rule, as this produced satisfactory results. The singularities were placed along the 
normals to the surface, at chosen boundary points, at a fixed distance from the 
boundary, as described in [ 143 (see Fig. 1). In most cases, the distance was taken 
to be 0.1. 

Since the minimization routine requires starting values for all the variables, the 
coefficients cj and dj were initially chosen to be equal to 1. Further, the boundary 
points were, in most cases, spread uniformly around the boundary. 

The least squares algorithms used were the Harwell library routine VAOSAD, 
which combines features from the Newton-Raphson, steepest descent and Mar- 
quardt methods, and the MINPACK routine LMDIF, which is a modified version 
of the Levenberg-Marquardt algorithm. Both of these routines have the advantage 

FIG. 1. Initial placement of singularities. 
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that the user does not have to provide the Jacobian, which is evaluated internally 
by a finite difference scheme. In the early stages of the experimental work, the 
efficiency of the two routines was compared using some very simple test problems, 
and it was found that LMDIF was faster and more economical. Subsequently only 
LMDIF was used. 

4. SOME SOFTWARF. DETAILS 

In the code used for the numerical solution of the biharmonic equation by the 
BMFS, the main goal is to minimize the sum of squares 

Since the nonlinear least squares routine LMDIF minimizes the sum of squares 

F= i I.f;I’, 
/-I 

we therefore provide LMDIF with 

/i=Np,)+ 2 (‘,K,(f,,P,)f f d,Kdr,,p,), i = I, 2,..., A4 (8) 
,= I ,=I 

and 
.v 

.f;=B(P,)+ 1 $w,,.P,)+ $ +A~,.PI) 
,=, dn 

(case (i)) 
,=I 

or 

f’ = B(P,) + 1 +%(r,, P,) I i= M+ I,..., 2M (case (ii)), (9) 
I- 1 

i.e., K = 2M. 
Further, the code was written to take advantage of two cases of symmetry. In the 

case where the problem possesses symmetry about one of the coordinate axes, only 
half the region is considered, in the sense that boundary points are placed on only 
half the boundary and singularities are placed in only the half plane containing the 
part of the region we are examining. When the problem is symmetric about both 
coordinate axes, only a quarter of the region need be considered. In many cases, 
this feature of the code reduces the size of the minimization problem substantially 
with a concomitant reduction in computing time. 

The minimization routine LMDIF produces the residuals ,f,, i = 1, 2,..., 2A4, and 
the sum of squares, 

SSR = y I,f;i ‘. (10) 
ITI 
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The computational effort is measured in terms of the number of function 
evaluations, i.e., the number of times the vectorf= [,f, ,...,Jr,+,] has to be evaluated. 
The subroutine LMDIF terminates when convergence to a user-specified tolerance 
is achieved or when a user-specified limit on the number of function evaluations is 
reached. 

Details concerning the evaluation of the expressions (9) for the various cases of 
symmetry are given in the Appendix. 

5. SOME SIMPLF TEST PROBLEMS 

To test the code, the BMFS was used for the solution of some simple problems, 
whose solutions are known. The numerical results are presented in Table I, where 
the following notation is used: 

EX 
INIT 

N 
M 
FEV 

I4m, 

ll,12 
(', d 

the number of the example; 

the boundary points IO which the initial singularities correspond, the boundary points being 
numbered consecutively in a counter-clockwise manner from the positive v-axis; 

the number of smgularities; 

the number of boundary points; 

the number of function evaluations; 

the maximum error in $, $’ (-?$I&) or Vz$, as appropriate, at the boundary points p,, 
I = I,..., M; 

the coordinates of the final locations of the singularities; 

the coefficients of K, and Kz in (2). 

EXAMPLE i. V”$ = 0 on the unit circle with $ = x, and $ and &j/an given on the 
boundary. The problem’s symmetry about the x-axis is exploited. 

Two singularities were used (N= 2) and 31 points placed uniformly on the boun- 
dary (M = 31). Table I (EX(I’),) shows the results obtained for the absolute values 
of the maximum errors in $ and d$/dn on the boundary, the final positions of the 
singularities and the values of the coefficients ci and d, after 300 function 
evaluations. The accuracy of the method is extremely good. It is interesting to note 
that the anti-symmetry of the problem about the y-axis is maintained in the final 
positions of the singularities and the values of the coefficients. Further, we observe 
that, as the solution is harmonic (V2$ = 0), the coefficients of the biharmonic fun- 
damental solutions (c,‘s) are suppressed. 

The same characteristics appear with four (N=4) instead of two singularities 
(N= 2) the difference being that convergence is considerably slower, (Table I, 
W4,,). 

In both cases the interior of the circle was divided using a uniform grid. The 
errors for $ at the grid points were found to be less than the maximum error for Ic/ 
on the boundary. 
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TABLE I 

Test Problems (Results) 

kImax IL., 
EX INIT N M FEV JI lj’0rVQ 1, 12 c d 

4 7 2 31 302 0.8824 0.9955 0.1595.10’ 0.9206~10’ 0.2630. 1O-5 -0.2658’ lo2 

25 lo-* 10m9 -0.1595’10~ 0.9206 lo2 0.2630. 10m5 0.2658. 10’ 

4 5 4 31 309 0.1482 0.3355 0.3458 10 0.1062 10 -0.1400 10-2 -0.3160 

10 10m4 1o-4 0.2362’10 0.3063.10 0.2542. lo-’ - 0.2609 

22 - 0.2244 10 0.3065.10 -0.2483. lo-’ 0.2300 

27 -0.3571.10 0.1148.10 0.1466.10-’ 0.3528 

ii 10 1 20 302 0.1507 0.9880 0.1633.10 -’ 0.6767.10 0.1952. LO2 -0.3572-10’ 

lo-’ 1O-4 

111 10 2 40 302 0.8781 0.9554 0.1035 10’ 0.5976. lo* 0.3225. 1O-4 -0.1725. IO2 

31 lo-* 1om9 -0.1035~10’ 0.5976. IO2 -0.3226. 1O-4 0.1725.10’ 

iv 7 2 20 303 0.3638 0.5098 0.2269’10 0.8778 0.1024.10 -0.5525 

14 lo-’ lo-) 0.5167 0.8382 0.7310~10-’ 0.7665. 10 .-’ 

” 7 2 31 302 0.8776 0.8256 0.1493 103 0.8627. IO2 -0.3558’ lOma - 0.2490.10’ 

25 lo-* 1om9 -0.1493~10’ 0.8627. lo2 0.3558. 1O-4 0.2490 10’ 

vi 7 3 31 1300 0.2711 0.7022 0.4344 10 0.1465.10 0.1529.10 -0.2173.10 

16 1om4 1om4 0.5650’ 10 -Is 0.3987 10 0.1483 10 0.1066.10 

25 -0.4344.10 0.1465.10 0.1524.10 -0.2173 10 

vii IO 2 28 202 0.1141 0.6205 0.2466.10 0.1022 10 0.1234. 10 -0.6530 

19 10-q 1o-5 0.1022 10 0.2466’10 0.1234.10 -0.6530 

EXAMPLE ii. V”$ = 0 in the unit circle with II/ =x2, and II/ and a$/& given on 
the boundary. The symmetry of the problem about both the x- and y-axes is 
exploited. 

For this problem, one singularity was used with 20 boundary points (N= 1, 
M= 20). After 300 function evaluations, the maximum errors on the boundary for 
$ and a$/& are of order 1O-3 and 10P4, respectively. Examination of the error at 
interior points showed that the maximum error in $ appeared on the boundary. 

EXAMPLE iii. V4$ = 0 in the unit square with $ =x, and $ and at)/& given on 
the boundary. The problem’s symmetry about the x-axis is exploited. 

Two singularities were used along with forty boundary points (N = 2, M = 40) 
and accuracy of order lo-* is obtained. Again, the anti-symmetry of the problem is 
preserved, the coeflicients of the biharmonic fundamental solutions are suppressed, 
and examination of the error for $ at interior points shows that the maximum error 
for $ appears on the boundary. Further, in this case, although the region contains 
corners, the error is uniform around the boundary (for both rl/ and @/an) and the 
maximum error does not appear at the corners as experienced using a BEM for the 
same problem [21]. 
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EXAMPLE iv. V”$ = 0 in the unit square with $ = x2, given Ic/ and a$/&~ on the 
boundary. Symmetry about both coordinate axes is exploited. 

After 300 function evaluations with two singularities and 20 boundary points 
(N = 2, M = 20), accuracy of order 10 ’ was obtained, and examination of the 
error for $ at interior points indicated that it reaches its maximum on the boun- 
dary. 

EXAMPLE v. V”$ = 0 in an ellipse with semi-axes a = 1.0 and h = 0.8 with $ = x, 
and $I and ?@/&I given on the boundary. Symmetry about the x-axis was exploited 
and the error for $ on the boundary was of order 10 * for N = 2, M = 3 1 after 300 
function evaluations. 

EXAMPLE vi. V”$ =0 in an ellipse with semi-axes a = 1.0 and h =0.8, with 
$ = .Y’, and $ and c?$/Jn given on the boundary. In this example, symmetry was 
exploited only about the x-axis (although the problem has symmetry about both 
axes). This was done to check that the symmetry about the y-axis is maintained and 
to examine the effect on the efficiency of the method of not exploiting the symmetry 
of the problem to the full. 

With N = 3 and M = 31, as many as 1300 function evaluations were required to 
obtain accuracy of order 10 4. The symmetry is, however, maintained and one of 
the singularities is eventually located on the y axis. 

EXAMPLE vii. V”$ = 0 in the unit square with $ = .Y’ +$, given $ and V’$ on 
the boundary. Symmetry about both axes is exploited. Two singularities with 28 
boundary points (N = 2, M= 28) produce accurate results (of order 10 4 and 
IO ‘) after only 200 function evaluations. Symmetry about the line y = x is also 
preserved (Table I ). 

The application of the BMFS to these simple test problems provided us with 
some useful information about the method and the way it is applied. First, the 
method proved very accurate and convergence was rapid for a small number of 
singularities and boundary points. We found that, in general, increasing the number 
of singularities slowed down the convergence of the minimization process. For such 
simple problems, however, a small number of singularities describes the problem 
sufficiently well, and therefore convergence is fast on the whole. The second impor- 
tant conclusion is that unlike BEMs and other boundary methods, the accuracy of 
the BMFS is not affected by the presence of corners (see discussion in Sect. 9). The 
error in both $ and c?$/& (or V’$) was uniform around the boundary. whether the 
latter included corners or not. Finally. in all of the examples, the error for I/ was 
evaluated at numerous interior points and it was observed that the error for $ 
reached its maximum on the boundary. Unfortunately, this cannot be verified 
theoretically as is the case for harmonic problems [30] because no maximum prin- 
ciple exists for biharmonic problems. as it does for harmonic problems. 
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TABLE II 

CPU Times 

N M 

I 20 

2 20 
2 31 
2 40 
4 31 
4 31 
9 60 

CPU time 

FEV (min.) 

302 0.049 
303 0.07 
302 0.07 
300 0.084 
309 0.11 

3009 0.92 
3010 3.6 

An obvious disadvantage of the BMFS over other boundary methods is its com- 
putational cost [20]. Except for the set-up cost and accuracy factors, an important 
compensating factor is the fact that accuracy is not affected by the shape of the 
region under consideration. This is due to the freedom the singularities are given, 
which in a sense absorbs the effect that, for example, a corner could have on the 
accuracy of the method. 

The CPU times in minutes required for various problems are listed in Table II. 
The computations were performed in double precision on an IBM 3081 computer 
at the University of Kentucky. 

6. AN IMPROVED BMFS 

In applications of the MFS to second-order elliptic problems, it has been obser- 
ved [31] that using a block of singularities by block of singularities technique 
could be advantageous. This technique involves working with a fixed number of 
singularities fi, (say) for a certain number of function evaluations, then leaving 
those singularities fixed and working with another set of fil singularities for a 
further number of function evaluations, and so on. This technique does not increase 
the size of the nonlinear problem to be solved at any time, while increasing the 
number of singularities. 

Attempts to use the same technique with the BMFS showed little or no effect on 
the efficiency of the method. Instead, another idea, developed by MacDonell’[28], 
proved very successful. This idea comes from the fact that, when using the method 
of fundamental solutions, it is difficult to decide a priori how many singularities to 
use to describe the problem satisfactorily. MacDonell [28] in the solution of the 
three-dimensional modified Helmholtz equation, introduced the idea of starting 
with a certain number of singularities, N say, and after a certain number of function 
evaluations increase the number of singularities to N,,,, by adding extra 
singularities and iterating further until the required accuracy is reached. 



MFSFOR BIHARMONIC PROBLEMS 443 

The efficiency of the above scheme for the BMFS is demonstrated in the solution 
of a simple problem, previously considered by Bogomolny [S], namely: 

Solve V”$ = 0 on the unit circle, given e and a$/& on the boundary, when the 
problem has the solution q = x2 + y2 + x + y. 

This problem has symmetry about the line y=q which can be exploited by 
rotating the axes by n/4, in which case: 

x* =x cos(71/4) +y sin(rr/4), 

y* = -x sin(lc/4) +y cos(rc/4), 
(11) 

and the problem becomes (dropping the *‘s): 
V”$ = 0 in the unit circle, given $ and a$/& on the boundary, with solution 

*=.u2+y2+x\jz. 
Taking advantage of the symmetry of the problem about the x axis, the BMFS 

was applied with N = 4 and M = 3 1. After 500 function evaluations, 10 3 accuracy 
was achieved. (See Table III, EX(a)). Next, the BMFS was started with N = 2 and 
M = 3 1. After 200 function evaluations, the number of singularities was increased to 
four (N,,,, = 4) by adding singularities at locations indicated by INIT,,,, while the 
number of boundary points was increased to 48 (M,,, = 48) (Table III, EX(d)). 

TABLE III 

Improved BMFS 

(i-J) 

(4 

(dl 

(d) 

5 4 31 500 0.1399 0.5034 0.3068.10 0.1055 10 0.9338 ~0.1162~10 

IO lo-' IO ' 0.1797.10 02576.10 0.58612 -0.7481 

20 -0.4259 0.4700'10 0.3670.10 -0.2006.10 

25 -0.4734 0.2525 IO 0.4726'10 -0.2279. IO 

IO 2 31 1000 0.4107 0.1348 0.2313 IO' 0.2268, IO' 0.1401' IO' ~0.1401-10' 

20 IO ' IO 1 ~0.2335.10' 0.2382. IO' 0.1559.10' -0.1385.10' 

5 4 31 lOOtI 0.5408 0.2539 0.3446. IO 0.1211. IO 0.1177~10 -0.1344'10 

IO 10-d lo- 0.1992, IO 0.3069.10 0.9464. IO -0.1064, 10 

20 -0.7543 0.4934'10 0.3625-10 ~0.2126~10 

25 ~0.5021.10 0.2600-10 0.492% IO -0.2363'10 

IO 2 31 200 0.7116 0.8674 0.1217.10' 0.1173-10' 0.4204.10' -0.4166. IO' 

20 10-2 Iam* -0.1152-10" 0.1198.10' 0.4153.10' -0.3282.10' 

14mx kl,,, 
INIT,,,, N,,,, Mm FEV i v 1, 12 c d 

IO 4 48 200 0.5498 0.8134 0.2708.10' 0.2659.102 0.1913-10' -0.1911~10' 

(contd) 38 IO m5 IO 5 -0.2662.10* 02712.10' 0.2038.10' -0.1836.10' 
0.2105' IO 0.2037.10 -0.2838'10 ' 0.2935.10m' 

-0.2394.10 0.2465.10 -0.5356.10m' 0.9150~10~~ 
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The process was then continued, with the initial singularities starting from their 
locations after the first 200 function evaluations and the new ones placed at certain 
initial positions chosen by the user. With only 200 extra function evaluations, 
accuracy of 10P5 was obtained (Table III, EX(d)(contol)). The error was also 
evaluated at points on a uniform grid in the interior and it was observed that the 
maximum error occurred on the boundary. 

Table III also shows the results for 1000 function evaluations with N =4 and 
M=31 (EX(c)), and 1000 function evaluations for N=2, M=31 (EX(b)). It is 
noteworthy that the accuracy reached by the improved version of the BMFS after a 
total of only 400 function evaluations cannot be achieved by the ordinary version of 
the BMFS, even after a considerable number of function evaluations. 

In principle, we could add more singularities and increase the number of boun- 
dary points after the second stage of the improved scheme. However, this can 
become counterproductive in that the size of the nonlinear minimization problem 
would increase considerably, thus requiring a large amount of computing time. For 
the problem we are examining, adding just one extra set of singularities is both 
cheap and efficient. It should be mentioned at this point that the initial positions of 
the new singularities are chosen in such a way as to be spread uniformly around the 
boundary. This is applied in general, unless there is good reason to place them near 
a particular point (see Sect. 8). 

The improved version of the BMFS was next applied to some more difficult 
problems from the theory of elasticity (Sect. 7). 

7. APPLICATION OF THE BMFS TO THIN PLATE BENDING PROBLEMS 

i. The General Problem 

The transverse deflection of a thin plate under a uniform load K per unit area 
satisfies [38], 

V4\v = K/D, (12) 

where D is the bending rigidity. When the plate is clamped, the conditions on the 
boundary are 

M‘ = 0. 

(71.2, (13) 
-= 
an 

0, 

whereas when the plate is simply supported, they are 

\2‘ = 0, 

V2w = 0. 
(14) 

In the following way, the above problems can be easily transformed to biharmonic 
problems of the forms already encountered (cf. [ 171). 
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Let 

Then if we write 

it follows that 

subject to either 

IcI = (x2+Y2)2=;. 
I 64 

v4*=o 

in the case of a clamped plate, or 

(16) 

(17) 

(18) 

in the case of a simply supported plate. The BMFS can now be applied to either of 
these problems. Once the minimization procedure is completed and the variables 
are determined, $N can be evaluated at any point in the region. Then, the deflection 
w can be determined at these points by using 

i.e., (19) 

ii. Clumped Elliptic Plate 

This problem was previously considered by Murashima, Nonaka, and Nieda 
[32] using a MFS-type method in which the solution is of the form (2), but the 
locations of the singularities are fixed and the coefficients ci and d,, j= l,..., N, are 
determined by collocating the boundary conditions at 2N distinct points and solv- 
ing the resulting linear system by Gauss elimination. The semi-major axis of the 
ellipse was taken to be a = 1.0 and the semi-minor axis to be b = 0.8333. 

The problem for $ has symmetry about both the x- and y-axes, and if this sym- 
metry is exploited in the BMFS, only a quarter of the plate has to be considered. 
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The BMFS was applied to the problem for various numbers of singularities (and 
boundary points), and some of the results are displayed in Table IV. The improved 
version of the BMFS was also employed and, as shown in Table IV, there is sub- 
stantial improvement in both the accuracy of the results and the convergence of the 
method. 

iii. Simply Supported Square Plate 

A different geometry was next examined, in the sense that the region (the unit 
square) contains corners. Further, the plate is assumed to be simply supported 
instead of clamped. The problem has symmetry about both coordinate axes and, 
exploiting this fact, the BMFS need be applied to only a quarter of the region. 

This problem was also considered by Murashima et al. [32]. However, they 
found that the accuracy of their results suffered at points near the corners. This 
problem does not appear in the application of the BMFS and the improved version, 
which produce uniformly accurate results. The results obtained using the BMFS 

TABLE IV 

Clamped Elliptic Plate 

(b) 

(cl 

(d) 

(e) 

IO 2 20 500 0.9786 

IX lo-’ 

IO 

20 

30 

3 35 500 0.1635 

IO 9 

0.3393 

10m4 

0.5155 

IO ~4 

IO 

20 

30 

40 

4 48 2000 0.1125 0.2217 

1om4 1om4 

IO 2 20 200 0.4964 0.1051 

I8 lo- 10-Z 

10 2 20 250 0.1188 0.27 I5 

18 lo- lo- 

0.8857 0.2115. IO 

0.1066 IO 0.2649. IO 

0.2278. IO 0.7831 

0.7405 0.8623 

0.2137 0.9293 

0.1736. 10 0.2978 

0.1491 10 0.9109 
0.6140 0.9416 

0.1532 0.9132 

0.7432 0.1866.10 
0.8777 0.2556. IO 

0.8413 0.2031 IO 
0.1025. IO 0.2623. IO 

- 0.7708 -0.4457. IO ’ 

0.8966 0.8061. IO -2 

-0.5665, IO-’ 0.1801. IO ’ 

-0.2212. Ior -0.2440. IO ’ 

-0.1411’ 10-l m-06275.10 ’ 

0.2514’ IO-’ 0.9445 IO 2 

-0.3803 IO ’ 0.4257. IO ’ 
-0.1982. IO-’ -0.1965. IO ’ 

-0.8437 IO z -0.2200. IO 4 

-0.4151 -0.3615. IO ’ 
0.484 I 0.2185~10~’ 

-0.6274 ~ 0.4226 IO ’ 

0.7362 0.1267. IO -’ 

kl,,” kl,,, 
INIT,,, N,,, M,,, FEV * IL’ ‘, 12 C’ d 

(d) 24 3 36 I00 0.6512 0.4097 0.8921 0.1982. IO -0.5409 -0.3153~10 ~’ 

(contd) loms 10-4 0.1178. IO 0.2748’10 -0.6742 ~ 0.9608 IO ’ 
0.5573 0.8051 0.1185. 10m2 0.6099 lo-’ 

(e) I5 4 48 I50 0.9965 0.1724 0.8976 0.2443. IO 0.2140. IO 0.5360. IO-’ 
(contd) 24 lOm6 10-5 0.8408 0.2249. 10 -0.2027.10 -0.8515- IO-’ 

0.1088. IO 0.361 I -0.2631. IO 2 -0.2405. IO a 

0.7234 0.5753 -0.2315. IO-’ -0.1835, IO-+ 
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and its improved version are displayed in Table V. Again, the improved version of 
the BMFS requires fewer function evaluations and gives better accuracy than the 
standard BMFS. 

iv. Simply Supported Elliptic Plate Containing a Circular Hole 

The final example from the theory of thin plates considered in this study was one 
in which the plate is elliptical in shape with semi-major axis a = 1.0 and semi-minor 
axis h = 0.8333, and contains a circular hole of radius r = 0.2. The plate is assumed 
to be simply supported. 

A similar problem was considered in [32]; the BMFS produced results of com- 
parable accuracy. When using the BMFS, some singularities are placed in the hole 
and some in the exterior of the ellipse. Previous experience with the MFS [ 111 
suggests that in such problems there is a tendency for the singularities which are 
placed in the hole to move towards the inside of the region. One way of avoiding 
this is to use a sufficiently dense set of boundary points on the circular boundary to 
serve as a barrier to such movements. Only one quarter of the region (symmetry 
about both axes) was examined and an equal number of boundary points was used 
on the circular boundary (M,) and the elliptic boundary (M,). Experiments 
indicated that using one or two singularities inside the hole (fi2 = 1, 2) and two or 
three singularities outside the ellipse (fi, = 2, 3) produced accuracy of order IO- 4 
(Table VI). 

TABLE V 

Simply Supported Square Plate 

(a) 5 3 20 500 0.8521 0.1221 0. I I99 IO 0.2442 -0.4621. IO-’ 0.8044 10 - ’ 
10 10-a IOF 0.6989 0.6978 0.6305.10 - ’ 0.4005~ 10-l 
16 0.2405 0.1153.10 -0.4106.lOW’ 0.1733~10-* 

(b) 10 4 48 3500 0.2555 0.4841 0.1342. IO 0.4485 ~0.1375’10 -0.451 I IO ’ 
23 10m4 lo- ’ 0.1696. 10 0.5741 0.1519~10 -0.3808.10 ’ 
26 0.5751 0.1697-10 0.1523. IO -0.3153. IO -2 
39 0.4485 0.1342.10 -0.1376. IO po.4514, 10-l 

(Cl 9 2 20 loo 0.2282 0.1783 0.7518 0.7518 0.1290 0.1773.10 -2 
II lO-4 IO-’ 0.1506. IO 0.1506.10 -0.1992 0.2890.10-’ 

(c) 20 4 48 100 0.5567 0.5409 0.8108 0.8108 0.2472 0.1720. IO -* 
(contol) 29 lO-5 10-4 0.1167.10 0.1167.10 -0.2950 0.1915’ lo- ’ 

0.6325 0.4471 -0.1869. 1O-2 -0.5983. 10m4 
0.4471 0.6325 -0.1869. IO-’ -0.5985’10 --4 
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TABLE VI 

Simply Supported Elliptic Plate with Hole 

kImax lelmax 
INIT &,fl, M,M2 FEV q? V=$ 'I ‘2 ‘ d 

4 2 2 12 12 200 
8 

16 
20 

4 2 2 12 12 500 
8 

16 
20 

3 3 1 12 12 500 
6 

10 
18 

5 3 1 24 24 500 
12 
19 
36 

5 3 2 24 24 500 
12 
19 
32 
40 

4 3 2 16 16 500 
8 

12 
21 
21 

0.4432 
IO-’ 

0.3158 
10-3 

0.1952 
10-b 

0.7975 
10 4 

0.1578 
10-d 

0.2275 
10m4 

0.6422 0.1758 
10 ’ 0.8067 

0.6772 
0.3873 

0.2671 0.2297 
10-j 0.1149 

0.7013 
0.3287 

0.7036 0.2145 
1O-5 0.1556 

0.5864 
0.3032 

0.7571 0.2178 
10-s 0.1587 

0.6034 
0.3031 

0.2463 0.1860 
10-d 0.1380 

0.4912 
0.8436 
0.3340 

10 0.6692 0.2136.10-’ 0.2365 
0.1728.10 -0.6665.10-’ -0.6271 

IO-’ 0.2502. IO- ’ -0.3169, 10m2 0.4624 
10 ’ 0.8705, 10-l -0.1545. lo-* 0.9490 

10 0.9971 0.9125. IO -’ 0.6728 
10 0.2185. IO -0.1464 - 0.4063 
10-l 0.3125’ 10-l -0.3256, lo-? 0.4650 
lo-~’ 0.8669. 10-l -0.1477, 1Om~2 0.9341 

10 0.5516 0.4464. 10 ’ 0.2907 
IO 0.1586.10 -0.3326. 10-l 0.5844 

0.1993~10 0.5622.10 ’ -0.1444 
10-l 0.1223. IO-’ -0.4313.10 -2 0.5348 

10 0.5599 0.4841. 10-l 0.3104 
10 0.1634.10 -0.3505.10 ’ 0.6353 

0.2038.10 -0.5932.10-’ -0.1620 
10-l 0.1223. 10-l -0.4313. 1O-2 0.5348 

10 0.479 1 0.2182. 10-l 0.1740 
10 0.1359.10 -0.2605.10 I 0.5384 

0.1712.10 -0.3893.10-’ -0.5432 
10. ’ 0.2758.10-’ -0.1677,10-’ 0.2864 
10-l 0.5792’10-’ -0.2993.10-’ 0.2668 

0.4719 0.1777 10 0.4406 0.1693. IO-’ 0.1519 
1om4 0.1305 10 0.1229.10 -0.1618.10-’ 0.5760 

0.5135 0.1718.10 -0.4260. lo--’ -0.5129 
0.1082 0.2867.10-’ -0.4352. 1O-3 0.1195 
0.3579 10-l 0.3844. 10-l -0.4091 1O-2 0.4254 

10 ’ 
10~ z 
IO- 1 
10-d 

10-1 
to- 
lo-’ 
10-d 

10-1 
lo- ? 
lo- ’ 
lo-’ 

10-l 
10-Z 
10 ’ 
10-3 

IO ’ 
10 2 
10 2 
10-j 
to- ’ 

10 -’ 
10 z 
10 2 
IO -3 
10-1 

8. A FLUID FLOW PROBLEM 

i. History 

The driven cavity problem describes steady viscous flow in a square cavity with a 
sliding wall (Fig. 2). The streamfunction $ satisfies: 

Subject to 

V”$=O in L? (20) 

(21) *=o, $0 on DABC, 

$=O, g=-1 on CD. (22) 
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FIG. 2. Driven cavity problem. 

This problem has received much attention in the past. Boundary element methods 
were used by Kelmanson [22] and Ingber and Mitra [lS], and an MFS-type 
method with fixed singularities by Burgess and Mahajerin [7]. 

The main feature of the problem is the presence of boundary singularities at the 
corners C and D, where the vorticity, V2$, and its normal derivative N*$/&r 
become unbounded. This, in conjunction with the presence of the other two corners 
in the region, can produce poor results in the whole region when a direct BEM is 
used with piecewise constant approximations [22]. This is apparently avoided 
when a subtraction of the singularity technique is used. When an indirect BEM is 
used, more satisfactory results are obtained by Ingber and Mitra [ 151 however 
with higher-order boundary elements (quadratic). 

ii. Applicution of the BMFS 

The problem has symmetry about the line through the midpoints of the sides AB 
and CD, and this is exploited when using the BMFS, as only half the region needs 
to be considered (Fig. 3). Due to the presence of the boundary singularity at D, a 
relatively large number of singularities (and boundary points) is required to 
describe the problem. Further, a denser grid was taken near the singularity by 
choosing boundary points of the form 

----- 

(23) 

FIG. 3. Symmetry of the driven cavity problem 

581/6912-13 
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where M, describes the number of boundary points on either of the sides adjacent 
to the singularity (GD, DE), dj describes the distance of the jth-boundary point 
from D (on both GD and DE, counting j from D). When LX = 1 a uniform dis- 
tribution of points is obtained and values of CI> 1 refine the distribution in the 
neighbourhood of the boundary singularity. The value x = 2 was used, after some 
experimentation with various values of X. 

Also, experiments showed that the BMFS algorithm places several singularities in 
the neighbourhood of D (Fig. 4). This is a direct result of the presence of the boun- 
dary singularity there, as the BMFS approximation is only valid if the auxiliary 
boundary, formed by the singularities, approaches the boundary of the region 
under consideration at the singular point [ 11: 331. 

iii. Three Approaches-Numerical Results 

Three versions of the BMFS were used to solve this problem. Approximations at 
interior points of the region 0 < x G 0.5, 0 6 y < 1.0, obtained using these methods 
and by Kelmanson [22] using a BEM incorporating a subtraction of singularity 
technique with 200 boundary segments of equal length, are presented in Table 8 in 
the format described in Table VII. 

First, the ordinary version of the BMFS was applied and it was found that the 
convergence of the method was very slow. This is a result of both the presence of 
the boundary singularity and the magnitude of the nonlinear minimization problem 
(N = 10, M = 80, say). As many as 5000 function evaluations were necessary to 
obtain accuracy of order 10 3 (Table VIII). The second approach was based on a 
block-by-block technique. In Section 6 it was mentioned that such techniques were 
applied when solving simple test problems using the BMFS and little improvement 
was achieved. For this problem however, because of the magnitude of the 
minimization problem and the ability of the block-by-block technique to deal with 
separate sets of singularities, it was hoped that some advantages would be gained 
by this. This was partially true, as is shown in Table VIII. The third approach was 
the improved version of the BMFS. This process was started with N uniformly dis- 

FIG. 4. Observed typical behavior of singularities. (a) N = 10, M = 80, (b) N = 10, M = 60 
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tributed singularities and, after a certain number of function evaluations, a few 
more singuarities were added in the neighbourhood of the boundary singularity at 
D and the process was continued. The results at interior points were tabulated and 
were found to be in good agreement with those obtained by Kelmanson [22] with 
a direct BEM incorporating a subtraction of the singularity technique. 

Some of the numerical results obtained are presented in Table VIII. It was obser- 
ved that, in general, at a boundary point the error in II/ was of order 10e3 or lop4 
with the exception of points near D where the accuracy was lower due to the 
presence of the boundary singularity at this point. 

On the whole, the results for this problem were satisfactory. However, a draw- 
back was the large computing cost, as many function evaluations had to be perfor- 
med to achieve accuracy of order 10d3. This is due to the presence of the boundary 
singularity and the magnitude of the nonlinear minimization problem. On the other 
hand, the results at interior points were very satisfactory and although little was 
done to describe the singularity, this did not affect interior values substantially. 
Figure 5 is a contour plot of the streamlines in the region 0 ,< x 6 0.5, 0 6 y < 1.0 
using results 4 of Table VIII. This describes accurately the flow (cf. [22]). 
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9. COMMENTS AND CONCLUSIONS 

The BMFS in its various forms has proved to be a powerful numerical method 
for the solution of biharmonic problems. Like BEMs, it requires that only the 
boundary of the region be discretized, which is extremely useful for problems where 
only the solution on the boundary is required. Further, the data preparation is very 
easy and cheap. In the BMFS, relatively few boundary points and singularities are 
required to produce accurate numerical results. This is in contrast with other boun- 
dary methods, for which a denser discretization is required and, in general, more 
terms have to be used in the approximation function to obtain comparable 
accuracy. Unlike BEMs, the BMFS does not involve integrations, which can, in 
some cases, prove tedious and expensive, especially when higher-order elements are 
used. Probably the most important feature of the BMFS is the fact that the freedom 
of movement that the singularities are allowed (although we pay for it in computing 
time) produces a uniform distribution of the error on the boundary regardless of 
the shape of the latter. In particular, corners in the region do not provide a par- 
ticular source of inaccuracy. This is a feature which is not, on the whole, shared by 
BEMs where it has been either mentioned in the literature [12, 16, 17, 29, 341 or 
observed [22] that corners are sources of large errors. The same problem seems to 
appear in the application of the MFS method of [32] to biharmonic problems con- 
taining corners. 

A criticism of the BMFS could be its computational cost arising from the use of 
the nonlinear least squares minimization routine. However, no attempt has been 
made to exploit the structure of the functional to be minimized, in which the coef- 
ficients of the fundamental solutions (c,, d,) are linear and only the coordinates of 
the singularities appear nonlinearly. Moreover, for convenience, we have chosen to 
use the subroutine LMDIF which calculates an approximation to the Jacobian. The 

TABLE VII 

Description of Table VIII 

I 
0.125 

I 

1 
2 
3 4 4 
5 

JInt,erior 
pomt 

- 0.0625 + 

(1) BMFS, M=80, N=lO, FEV=SOOO. 
(2) Block-by-block BMFS, M= 96, N, = 10, fi, = 10, FEV = 2000. 
(3) Improved BMFS, M=96, N=9. M,,,, = 132, N,,, = 12, FEV = 2000. 
(4) Improved BMFS, M = 96, N = 9, M,,, = 132, N,,, = 12, FEV = 3000. 
(5) BEM incorporating subtraction of singularity technique [22] (200 boundary segments of 

equal length). 



0.0135 0.0372 
0.0167 0.0350 
0.0186 0.0390 
0.0150 0.0378 
0.0148 0.0378 

0.0548 
0.0514 
0.0558 
0.0556 
0.0553 

0.0086 0.0276 
0.0066 0.0257 
0.0056 0.0258 
0.0068 0.0264 
0.0086 0.0277 

0.0487 
0.0472 
0.0477 
0.0480 
0.0488 

0.0061 0.0187 0.0348 
0.0050 0.0178 0.0343 
0.0050 0.0176 0.0338 
0.0051 0.0178 0.0341 
0.0053 0.0182 0.0345 

0.0030 0.0110 0.0218 
0.0037 0.0116 0.0223 
0.0032 0.0111 0.0217 
0.0028 0.0109 0.0216 
0.0031 0.0111 0.0219 

0.0010 
0.0018 
0.0013 
0.0015 
0.0016 

0.0056 
0.0062 
0.0058 
0.0059 
0.0061 

-- 
0.0025 
0.0019 
0.0027 
0.0027 
0.0026 

0.0119 
0.0124 
0.0120 
0.0121 
0.0122 

0.0008 
-0.0002 

0.0010 
0.0010 
0.0007 

0.0052 
0.0050 
0.0053 
0.0054 
0.0054 

O.OOQ6 omO5 O.ooO8 
-0.0004 -O.OOQl 0.0007 

0.0004 o.ooo3 OK08 
0.0000 o.OOQ2 0.0008 
o.cQo1 0.0006 0.0013 
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TABLE VIII 

Interior BMFS Values for I) 

0.0665 
0.0648 
0.0673 
0.0674 
0.0669 

0.0742 0.0791 0.0818 0.0827 
0.0749 0.0821 0.0863 0.0877 
0.0747 0.0792 0.0816 0.0823 
0.0747 0.0788 0.0807 0.0815 
0.0745 0.0791 0.0817 0.0825 

0.0674 
0.0667 
0.0667 
0.0670 
0.0675 

0.0819 0.0920 0.0980 0.0999 
0.0825 0.0939 0.1007 0.1030 
0.0814 0.0916 0.0975 0.0994 
0.0815 0.0915 0.0972 0.0991 
0.0820 0.0920 0.0979 0.0998 

0.0510 
0.0510 
0.0502 
0.0504 
0.0509 

0.0650 0.0756 0.0822 0.0844 
0.0657 0.0768 0.0838 0.0862 
0.0643 0.0750 0.0816 0.0838 
0.0645 0.0751 0.0816 0.0837 
0.0650 0.0756 0.0821 0.0843 

0.0333 0.0438 0.0520 0.0573. 0.0590 
0.0338 0.0445 0.0529 0.0583 0.0601 
0.0330 0.0434 0.0516 0.0568 0.0586 
0.0331 0.0435 0.0517 0.0569 0.0586 
0.0333 0.0438 0.0520 0.0572 0.0590 

0.0188 0.0254 0.0307 0.0341 0.0353 
0.0193 0.0259 0.0312 0.0347 0.0359 
0.0188 0.0252 0.0304 0.0338 0.0350 
0.0189 0.0254 0.0306 0.0340 0.0351 
0.0190 0.0255 0.0306 0.0340 0.0352 

0.0085 0.0118 0.0146 0.0164 0.0171 
0.0085 0.0119 0.0147 0.0165 0.0172 
0.0085 0.0117 0.0144 0.0162 0.0168 
0.0086 0.0119 0.0146 0.0164 0.0170 
0.0087 0.0119 0.0145 0.0162 0.0168 

0.0017 0.0029 0.0042 0.0052 0.0055 
0.0017 0.0029 0.0040 0.0048 0.0050 
0.0017 0.0029 0.0040 0.0048 0.0051 
0.0018 0.0030 0.0042 0.0050 0.0052 
0.0023 0.0032 0.0040 0.0045 0.0047 

use of LMDER, also a MINPACK subroutine, might improve the efficiency of the 
minimization process but would increase significantly the complexity of the code 
since LMDER requires the user to supply the exact Jacobian. It was observed that 
in most problems considered, the computational cost was relatively low, expecially 
when using the improved version of the BMFS. 

Finally, it should be emphasized that the BMFS is not restricted to the two kinds 
of problems described in Section 3. These were considered because they are 



454 KARAGEORGHIS AND FAIRWEATHER 

representative of the types of problems most commonly encountered. A minor 
modification of the code would adapt the BMFS to any combination of boundary 
conditions and even nonlinear boundary conditions. 

APPENDIX 

The nonlinear minimization routine minimizes 

M 
= iI a(Pi)+ f cjKl(t,3Pf)+ f d,K2(tjTPi) *+ B(Pi)+ f 

r=l ,= I ,= I I ! 

(? 

,=, C,~Ju,di) 

+ f 4&(t,;p,) 2 

II (case (i)) 
,= I 

(AlI 

01 

,=I ,=I j= I 

case (ii)) (A21 

To provide the nonlinear least squares routine with the appropriate sum of 
squares to be minimized, the following quantities must be evaluated (where t, = t 
and pi=p): 

F, = K,(t, PI, 

F2 = Ut, ~1, 

FL, =V*K,(t, p). 

When the problem has no symmetry, differentiation gives 

F, = J(h-P,)2+(f2-P2)2 2log 1 [ J (2, -PII + (f2 -Id2 2 
p+Jm 1 p+Jm ) 

F2 = log J@l -PII + (12-P2J2 

p+Jm 

(A31 

(A41 

(A51 
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FN, = 

(‘46) 

FN 
2 

=&PI - tl)(aP,lan) + m, - Mwan) 
(tl-P1)2+(t2-P2)2 ’ 

(A7) 

FL,= 
4 &I -PI)* + (f2 -P212 

(P+J:+r:)’ p+Jm 1 1. 2 + 2 1 C.48) 

where (dp,/dn, dp,/an) are the direction cosines of the boundary point p. When the 
problem has symmetry about the x-axis, terms have to be added twice because, for 
a contribution from a boundary point (pr , p2), there will correspond a boundary 
point (P,, -p2) below the x-axis, and the two have to be added in the sums (Al) 
and (A2). Thus the terms are modified as follows: 

(fl -PA2 + (f2 -P212 * ,og Jo, -PA2 + (f2 -P212 2 
piJm 1 [ p+Jm 1 

+ J’(b -PI)* + (b -pd2 +4t,p, 2 log I [ J (tl-P,)2+(f2-p2)2+4t2p2 * 1 
(A91 

F2 = log [” (tl-PI)2+(t2-P2)2J(f,-p1)2+(~2-p2)2+4f2p2 ’ 

(P + &m2 1 (AlO) 
FN, = 

+ log J(t,--p,)2+(t2-P2)2+4t222 2 
L ( P+Jm ! 1 +l 

. 2(P,-I,)g+2(P2+i2)g 
[ I 

, 

FN 
2 

= 2IP, - flNaP,lan) + 2(P2 - f,)(@,lanJ 

(tl --PI)* + (t2 -P2Y 

+ 2(P, - t,)(~P&) + 2(P2 + t,)(~P,ldn) 

(fl -P112 + (t2 -P212 +4[2P2 ’ 

(All) 

(AQ) 
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FL, = 
4 

(P+Jm)* 

When the problem has symmetry about both the X- and the y-axes, contributions 
from three more points have to be considered for each point @, , p2), namely, 

(-P15P2) in the second quadrant, 

(PI, -Pz) in the fourth quadrant, 

and 

C-P,, -P*) in the third quadrant. 

This yields the modifications 

,:it, -PI)2 + (t,--p,j* 2 

+ 
~(~,--p,)*+(~z-P2)*+4~,p, J (kPd2+(kP2)*+4f2P* 

+ 
J(t,-Pl)*+(t2-P~)~+4rlP1 2,og 1 L J 

+ 
\/:(~,-P,)2+(12-P2)*+4(t,P,+tzP*) * 1 

x ,og 

i 

J(~,-P,)*+(~*-P2)*+4(f*P,+~?P*) 2 

p+j:t:; 1 
F2 = log JUl -Pd2+ (e-P*)“2 

p&q 

+ log J(t,-P,)2+(rz-Pz)2+4t,p, ’ 
1 

+ log 
I 

J(t,-P,)*+(t~-P2)*+4tlP1 2 

p+JF; I 

+ log 
L 

J(~~-P~)*+(~z-P~)*+~(~~P~+~zP~) * 

p+Jm; 1 

(A14) 

(AIs) 
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FN, = 

J(t,--p,)2+(f2-P2)2+4f2P2 2+1 > 1 

457 

+ log [ ( 
J(tl-P1)2+(f2-P2)2+4tlpr ‘+I 

p+Jqzj > 
. ?(p,+lJ$+?(p,--l,)$ L 1 

(‘416) 

(t,-P,)2+(t,-P,)2+4(flp, +r,p*)’ 

J (tl -PA2 + (t2 -P212 

1 

2 FL,= 

(A171 

+ log &l -PI)‘+ (f2 -pz)‘+ 4t,p, 1 2 

+ log J(~,-P,)2+(tz-p*)2+4t,p, 2 

I 

+ log J(t,--pl)2+(t2-p2)2+4(t,p,+t2P2) 
(A181 
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